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We investigate the analytical convergence of SCF and MCSCEF calculations,
when the dimension of the subspaces to which the orbitals are restricted
tends to infinity. We show that the completeness only in L*(R?;, C?) of the
orbital bases does not ensure the convergence of the Ritz-energy, neither in
SCF nor in MCSCEF calculations, but that this convergence - as well as the
convergence of the Ritz-orbitals in SCF calculations — is on the contrary
guaranteed if the orbital bases are complete in the Sobolev space W 3R>,
C?). Some consequences on the choice of the orbital exponents of Slater and
Gauss functions are also discussed.
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1. Introduction

During the past fifteen years, calculations of atomic and molecular structure
have had a great development and brought relevant contributions to quantum-
chemistry. Most of such calculations are variational and are carried out, as it is
well known [1, 2], following three general procedures:

(A) Configuration Interaction (CI) Method

The electronic wave function ¥, is written as Zf=1 o W where W' are fixed
Slater determinants (SD) and ¢’ complex coeflicients to be determined to
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is the Born-Oppenheimer Hamiltonian for N electrons and K ruclei’, where

Z, is the charge of nucleus a, r,,=|r;—R,| and r;=|r;—r,] (r, and R, being
position operators of electron i and nucleus a, respectively).

(B) Self-Consistent-Field (SCF) Method

V¥, is written as a single SD, \I’=_(1/N!)1/2 det {y", ..., ¥"}, where the one-
particle wave functions (orbitals) ¢' are determined to minimize E(W¥,).

(C) Multiconfiguration Self-Consistent-Field (MCSCF) Method

WV, is written as in (A), but in this case both the complex numbers ¢! and the
orbitals ', used to construct the SD’s ¥, are determined to minimize E(¥,).

These methods, however, have not completely been studied from a rigorous
mathematical point of view. Such a study, in our opinion, matters not only
because it provides the necessary mathematical foundation, but also because it
allows the utilization of some results of the minimization theory [3, 4] and of
the approximation theory in Banach spaces [3, 5], which could improve precision
and reliability of calculations. We think that the main problems which should
be studied to reach this aim are the following:

(1) Existence of the global minimum of the functional E(V¥.) on each set
considered’ in (A)—(C). '

(2) Convergence” of the numerical methods used for the approximate determina-
tion of this minimum.

(3) Estimate for the error of the approximations.

In the CI method to our knowledge, the problems (1) and (2) have been solved,
but not (3). By this method in fact, approximated eigenvalues and eigenvectors
of H are determined. Therefore the minimum existence problem in question is
equivalent (cf. [6] p. 6) to the existence problem for the discrete spectrum of
H, which, as it is well known has been already solved [7]. The numerical method

! From now on we shall denote by (+|-) and |-| the usual scalar product and norm of each space

L? considered in this paper.
2 Of course, the atomic Hamiltonian is obtained for K = 1.
That is to say: existence of a wavefunction V¥, belonging to the set in question, such that
EW¥¥ =E(¥,) for all ¥, of the set.

In this paper by convergence we mean analytical convergence and we shall not be concerned
with the related numerical problems.

3
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used is that of Rayleigh—Ritz and its convergence properties have been studied,
from thirty years ago [8] up to now [9-12].

In the case of SCF method the minimum problem is the one of E(¥,) on the
set § of SD’s, and the related existence problem has been solved recently [13].
The numerical procedure more widely used® consists in writing the orbitals '
as Y, cidl, where the functions ¢ belong to some complete sets® {¢f1};°=1,
i=1,..., N, (orbital bases) and then in determining the Nm coefficients ¢}, to
minimize E(¥,). To reach this aim, usually the matrix form of the Hartree-Fock
equations (cf [1, 2]) is solved, or direct minimization methods for E(V¥,) [1, 14]
- or also other numerical methods [15] — are used. Anyway, since (whatever
is the numerical method adopted) an approximate minimization of E(W,) is
eventually performed by restricting the orbitals to m-dimensional subspaces,
the above procedure is nothing but the Rayleigh — Ritz method (RRM) applied
to the minimization of E(¥,) on §, as it will be specified better in Sect. 2. In
account of this, we shall denote such numerical procedure by SCF-RRM. The
Ritz-energy, as well as the Ritz-orbitals’ depend on the dimension m of sub-
spaces. Therefore it arises the problem of the convergence of these quantities to
the infimum of E(W.) on S and to the orbitals minimizing exactly E(¥,) on S,
respectively, when m ->o0. This convergence, to our knowledge, has not been
yet rigorously proved and is generally assumed (cf. [1] p. 116, [2] p. 6, [16]
p. 1498, [17] p. 3787 and [18] p. 3958).

Concerning the problem of the estimate of the truncation error, which is of great
practical interest in order to estimate rigorously the Hartree-Fock limit, we have
a similar situation, since up to now this problem has not been faced in a rigorous
mathematical way, but only within a somewhat empirical framework [18].

In the case of MCSCF method, the minimum problem is to minimize E(¥,) on
the subset of §1 X+ X8 X Cyx---xCp (where C is the complex field and X
denotes the Cartesian product of sets) described by the linearly independent
SD’s {¥', ..., U}, As far as we know, the related existence problem has not
been solved yet. The numerical procedure used is again the RRM as it was
described in the SCF method. Therefore we shall denote such procedure in this
case by MCSCF-RRM. Hitherto, neither the convergence properties nor the
error estimate in the MCSCF-RRM have been studied. Out of the foregoing
unsolved problems we shall consider in this paper only the convergence of the
SCF-RRM and of MCSCF-RRM; the remaining problems will be considered
in forthcoming papers.

We shall call, according to [9], the convergence of the Ritz-energy to the infimum
of E(¥.) and the convergence of the Ritz-orbitals to those ones minimizing

For atoms, however, the numerical integration of the Hartree-Fock equation is often used,

Here we consider in general different orbital bases for different orbitals. However for molecules,
we confine ourselves to consider one-centre orbital bases, since all results of this paper deduced in
this case remain valid, as we shall see in Sect. 4, also in the case of many-centre orbital bases.

By Rirz-energy and Ritz-orbitals we mean the value of the minimum of E(¥,) and the correspond-
ing minimizing orbitals, respectively, when the orbital bases are truncated at a finite value m.
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E(¥.), when m - 00, E-convergence and - convergence, respectively. In this
paper, for reasons which we shall show in the next section, we take into account
the spin without restrictions, and thus our orbitals ' are always supposed to be
spinorial functions, namely pairs {¢’, '} where ¢, ¢' are complex-valued
square-integrable functions. The corresponding Hilbert space will be denoted
asin[13] by8 L?(R?; C?) (R indicates the real numbers and C the complex ones).

In this work we shall prove that the completeness only in the space L3 (R?; C?)
of the orbital bases {¢.}en-1, i=1,..., N, is not sufficient to guarantee the
E-convergence, neither in the SCF- RRM nor in the MCSCF-RRM, but that
the E-convergence is on the contrary ensured in both cases if the sets {¢.}r-1
are complete in the Sobolev spaces 1 (R?; C?). More precisely we shall show
that our more restrictive completeness condition guarantees, in the SCF-RRM,
both the E-convergence and the ¢- convergence (in the norm of L}(R?; CY).
In the MCSCF-RRM, since the problem of the existence of a global minimum
of E(¥,) on the subset of §; X+ X8 X Cyx: -+ Xy previously specified has
not yet been solved, we can show only that the completeness in the space
Wi (R?; Cz) of the orbital bases guarantees the E-convergence. Our sufficient
condition of convergence corresponds exactly to that one of the RRM in the CI
method in the form given in [9-11], and implies just the same conditions on the
choice of the orbital exponents of Slater and Gauss basis functions in order to
ensure the foregoing E-convergence and - convergence. However the procedure
for determining it as well as our proof of E-convergence and -convergence,
are completely different from those of the CI case, because (although in both
cases it is a matter of convergence of the RRM) the two convergences are actually
very different. In fact the convergence problem of the RRM in the CI method
is equivalent to the convergence problem of the RRM in an eigenvalue equation
(Schrédinger equation), while our convergence problem is equivalent to the
convergence problem of the RRM in pseudo-eigenvalue equations (Hartree—
Fock equations in the SCF-RRM and Fock-like Eqs. [20] in the MCSCF- RRM).

Our results concerning the E-convergence, both of the SCF-RRM and of the
MCSCF-RRM, will be obtained in Sect. 2 in the framework of the minimization
theory. The y-convergence of the SCF-RRM will be proved in Sect 3, by using
some results of [13]. In Sect. 4 we shall discuss some implications of our results
in current calculations.

2. E-Convergence of the SCF-RRM and of the MCSCF-RRM

For the sake of clearness and simplicity, we firstly consider the problem of the
E-convergence of the SCF-RRM, and we start on this section by introducing

mathematical preliminaries and notations relevant to this problem only. In the
8 Obviously the norm and the scalar product in LX(R>; C?) are given by |¢'| = (0’ P +¢" )"
and <¢ W)= (@4 |wl) +(@L WD), respectively. o

2 (R?; C?) denotes the set of pairs {i’, ¢} with ¢’,, ¢ belonging to the usual Sobolev space
(cf. [19] p. 44) W,1 2 (R?). It is easily seen (by the same arguments as in footnote 17) that completeness
in WH2(R: C 2) implies completeness in L 2(R3; C?) but the converse is not true.
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final part of this section we shall show that the problem of E-convergence of
the MCSCF-RRM is immediately solved as an easy generalization of the SCF-
RRM case. In Ref. [13] it was shown that, in general, the energy functional
achieves a global minimum on the set of SD’s if the orbitals are spinorial functions,
and not if, as in practical applications, they are restricted to being products of
spatial and spin functions. On the latter more restrictive class of orbitals, there
exists a minimum but it is not known whether it is a global minimum or merely
a local minimum. For this reason we have supposed here that the orbitals ¢ are
in general pairs {¢/, ¢}, ¥', ¢~ € L}(R?). The corresponding Hilbert space has
been previously denoted by LZ(R?; C?), however, from now on, for brevity’s
sake, we shall denote it simply by'® L?. The whole Hilbert space of N-electron
wavefunctions of space and spin will be represented instead as in [13] by
LZ(RSN; c*N ). As we shall see better in Sect. 4, each result concerning the
E-convergence and -convergence derived by us for orbitals belonging to L?
will be valid also for orbitals products of space and spin functions. We set briefly,
from now on,
2

K
A Ai =1,
2m g ,E
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1 ta |"i‘“"j|

Recalling that in the SCF-RRM the electronic wavefunction is approximated by
a single SD

V=) det{y,..., "),

we denote in this case by E W ..., ¢") the energy functional. Although
EW', ..., ™) is actually a functional in L*(R*™; C?"), it is more convenient
to the aim of this paper, to regard it as a functional in the space L=L1®- - - ® L%
(¢ e L?) (@ indicates the direct sum of vectorial spaces). In this space the SD’s
T=(N)""det{y’, ..., & }#O are represented by the vectors (¢ I ™)
with linearly independent ', and the domain D(E) of EW', ...,¢™) by the

subset of such vectors which belong to Q:(1)®- - - @ Ox". We recall that Q)=
{¢:(¢|ny) <o} is the quadratic form domain of ¢ (cf. [21], p. 277), and that in
our case Q(¢)=D(t'?) and"!

Wilay="' )%y Yo'l e D) (1)

(cf. [22] p. 331). Here ' is the square root of ¢ and D(:*?) its domain. The
uselfulness of regarding E(¢', . .., ¢") as functional in L lies in identifying easily
and rigorously the SCF-RRM as a particular case of the RRM'?. To reach this
aim in fact, it is sufficient to consider L as the Banach space on which the method
is applied and to consider as subspace where E(', ..., ¢") is minimized that

% Whenever the orbital index i is not relevant we shall denote the space L (R C ) simply by

L?. The symbol L? should not be confused with the symbol of the usual Hllbert space of only spatial
orbitals. For the sake of clearness this latter space will be denoted by L (RyorL (R 3.

' This property, as well as other properties of linear operators in Hilbert space which we shall
use, are proved in the space LZ(R 3), but, as it is seen immediately they remain valid in the space L%
2 Fora rigorous definition of the RRM, see [3] or [4].
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one spanned by m elements of the complete system in"
L: {(éns -5 0)...0, ..., ¢ )}n=1. We shall denote by E and by (¢, . . ., )

the infimum of E(¢', ..., ¢") on D(E) and a minimizing vector, respectively,
namely:
- 1 Ny _ 1 N
Exw=E((, ..., ¥x) ];r(fo)E(w,...,w )- 2)

Now we give a sufficiency condition for the E-convergence of the SCF-RRM
by means of a theorem [3, 4] of minimization theory concerning the convergence
of the RRM in general. For reader’s convenience we report this theorem here.

Theorem 1:

(a) Let Q be any set in Banach space X and let F(x) be a continuous functional
on Q.

(b) Let {®,},-1 a complete system in X.

(c) Suppose there exists a vector x,, € L,, N Q, where L,, is the m-dimensional
subspace spanned by {®4, ..., D}, so that min,cr, o F(x) =F(xn)=F,,.

(d) Suppose that inf, .o F(x)= Fx is finite.

Then lim ;.00 Fin = Foo.

In other words this theorem guarantees, so long as (c) and (d) are satisfied, that
the sequence of the Rayleigh—Ritz upper bounds F,, converges to the infimum
F,, if it is used a basis set complete in the norm topology with respect to which
the functional in question turns out to be continuous. Now, in our case, (c) and
(d) are satisfied, as can be seen easily. However, concerning (a) we have the
following

Proposition 1:

The functional E(¢', ..., ¢™) is not continuous in L, namely in the topology of
the norm of L

W™=+ -+ eV, 3)
atany (¢, ..., ¢N)eD(E).

Proof:

Remembering a well known formula (cf. [23] p. 1480) for the matrix elements
of an operator with respect to two SD’s, we can write

N N
Ry (|t + v)" YDk, [1+3 (WP wy'*)Dl pg, rs]
= pq

EW',....y")= (4)

det {('[¢)} ’

3 We recall that by {p}2_1,i=1,..., N, we are denoting the basis sets (momentarily supposed
complete only in L?) in terms of which the orbitals are expanded.
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where D[k, []is the first rank minor assigned to the k-row and /-column of the
matrix {(¢'|¢")}, i, j=1,2, ... N, and D[pg, rs] is the second rank minor of the
same matrix assigned to the p, g-rows and r, s-columns and antxsymmetnzed in
these indices. Now we con51der the sesquilinear form (" [u//) Owing to the
unboundedness of ¢ in L?, it is not bounded in L and thus two sequences {w b1
and {})2. exist such that

Whltgh) = crenlwnliv] (5)
where c,’i - o0 and cfl - 00,

By defining, V(io, . .., ¥0 )€ D(E), the new sequences {02 and {wley,
where

1 tpn Il 1 lpn
+ d ¢, =
cklwil vs and ¥ ch 1wl

which are strongly convergent in L? to ¢& snd ¢, respectively, we get by (5)

k
'ﬁ;l - +¢09

11m (i |aiy =1 +{(ws|npo).

Therefore, recalhng the well known definition of contmulty (cf. [21] p. 6), the
sesquilinear form (W~ It(// ) is not continuous in L at any W, ... . o ) e D(E). Just
the same proof can be carried out for the sesquilinear form (" va ).

In the case of ("¢ |wy'y’) we can fix ¢ and ¢" (¥° and ¢°) in order to get,
using the same proof as above, that ("¢ |w¢/"°) is not continuous in L with
respect to ¢” and *(¢* and ), and hence with respect to 7, %, ¢', ¢° at any
(«//(1,, ..., U5 )e D(E). Thus by taking into account (4), the proposition is proved.

We remark that the hypothesis (a) of Theorem 1 can be weakened (cf. [4])
requiring that F(x) is only semicontinuous from below on Q. However also this
weaker condition is not satisfied by E(¢, ..., ¢"). We omit the proof of this
statement for the sake of brevity.

As a consequence, we have that the use in the SCF-RRM of orbital bases {dhtr-
complete only in L? (or - this is the same - of basis sets
{(qﬁ}l, e 0) (0, Y complete only in L) is not sufficient to ensure
the E-convergence.

In order to satisfy the hypothesis (a) of Theorem 1 in our case, we introduce a
new topology on L with respect to which F (W', ..., ") becomes continuous.

Proposition 2:

Set,
Yy, ¢ e D)= 0Q(),
(lw) = (Bl +(t' 2t %) (6)
il = o + 12 (7)
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where (see footnote®) (-|-) and || denote scalar product and norm of L2
respectively. Then expression (6) defines on Q(¢) a new scalar product and Q(¢)
becomes, in the topology of the new norm (7), the Sobolev space14 WA(R?; C?).

Proof:

Since 1'% is a closed operator from L” to L?, the proof of [24] p. 207 holds
equally well here. Taking into account footnote® and the definition of the space
WHR?) (cf. [19] p. 44) we get

(@) =(dlu) +(b-|w-) , 8
and

Il = [l + oI ©)
where ($.|.) and || are the scalar product and norm of W' (R?), respectively.
Thus the proposition is proved.
Proposition 3:

Let us denote by W the space Wi®,..., ® W eW!), thenE(W', ..., ¢")
is continuous in W, namely continuous in the topology of the norm of W

'y ™= P+ -+l NP2, (10)
atany (¢, ..., ¢")e D(E).

Proof:

In virtue of express1on (4) the proposmon will be proved if we shall show the
Continuity in W of (¢*|ny"), (¢*|oy') and (¢"y|wy'¢°) since the contmulty in
W of D[k, 1], D[pq, rs] and det {(¢'|¢')} is obvious. Let {(¢r, ..., ¥ )}tnz 12
sequence belonging to D(FE) and strongly convergent in W to (zpo, oL Ud)eE
D(E), then, as easily can be seen', (e) ¢, > ¢6 (f) tI/Z(//,, > tl/zzpo in L? and (g)
Wi > i (0) (1402050l > (404 in L © L7 By (1) and (6) we get

lim (s} = lim (2 ]ePn) = 210 Pwo) = (ws o).
By the inequality

O B S X (A B A R (A Bl e
(cf. [22] p. 310), by the ¢-boundedness of —v in the quadratic form

Wl -vey=alplP+b|t"?¢P,  ab>0, VyeW!' (11)

'* Prom now on, we shall denote the space W1’2(R3; c? simply by W' and, when the orbital
index { is relevant, by W1. The usual Sobolev space of spatial orbitals will be always denoted by
Wi (R or W'(R?).

> The symbol - denotes here strong convergence.
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(cf. [22] pp. 302, 321), and by (e) and (f), we get

lim [ lown) = (wolowo)]
= lim [y — o (Wn =)+ = g lodo) +(Wolo (v — wo))]

= lim {((s = o]~ 0 (@n = o)W = dol — 0 (Wn—w0))
+ | —wsl lowo| +[ows] [rn— ol} =0.

Finally, by the inequality
A e (A A A R (O A g AD
by the (¢ +t)-boundedness in the quadratic form of w
Wlwh=a'lw'y' P +ole+ 0" P, a'b'>0 WLyl e W
(cf. [8] p. 203 and [22] p. 321), and by (g) and (h), we get exactly as above

lim [ R wr ) — (e lwiows)| = 0.

Thus the proposition is proved.

Now the SCF-RRM can be identified as a particular case of the RRM of Theorem
1, by taking as Banach space X the space W, as basis_ {®,}- the set
{dr...,0)-+(0,..., ¢ }<-, which is complete in W if the orbital bases
{6532, are complete in W}, and as subspace L,, the subspace Win @+ @
W o, Where the Wi, are the m-dimensional spaces spanned by {4, ..., q{)iﬂ}.
As the set {(¢n,...,0) -+ (0, ... én)w-1 is complete in a topology with respect
to which, by Proposition 3, the functional E (z/;l, ..., ™) turns out to be con-
tinuous, we have, denoting from now on by E,, the Ritz-energy, namely the
minimum of E(W", ..., ¢ ) on D(EYN Wi, @+ ® Wy, the following

Proposition 4.

If in the SCF-RRM one takes as orbital bases, sets {d);}le complete in W,-l,
i=1,...,N,then lim,..0 E,, = Ex.

Now we consider the E-convergence of the MCSCF-RRM. In this case the
N-electron wavefunction is written as Y1, ¢ ', where the ¢ are the L linear
independent SD’s which can be built by the M orbitals {¢*, . .., ¥} (M > N).
The energy functional depends, thus, both on the orbitals {/', . . ., ¥™} and the
complex numbers{c’, ..., c'}, and therefore, we shall denote it byE®W!', ..., ™,
¢, ..., ¢"). The MCSCF-RRM differs from the SCF-RRM only formally, and
all what we said for the latter can be repeated here, provided that the space L
is replaced by the new space L @ -+ - ® Ly ® C1® - -+ ® C; and the space
W by the new space W] @+ ® Wy ® C1® - - - @ C..
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More precisely, we have the following propositions:

Proposition 5:

The functional E(¢', . . ., g™ ', ..., c")isnot continuousin L2 @ - - - ®LY ®
Ci@® - ®Cpatany (¢', ..., ™M .., cH belonging to its domain D(E).

Proposition 6:

The functional E(¢", ..., ¢™, ¢',..., c")is continuousin W} @ --- ® W, @
Ci® - ®C. atany(tpl,...,L//M,cl,...,cL)eD(E).

We shall not give detailed proof of these proposttions because it follows from
an easy extension of the proof of Propositions 1, 3. In fact, it is sufficient to
replace (4) by the new expression

E('pl"--’lﬂMacl’---’cL):

L
UZ=1 cle’ (% (Wilt+v)WNDylk, l]+;(¢’;¢;|w¢;¢;>pu[pq, ,s]>

L
Y e’ det (il
Ir=1

which differs from (4) for the summation on the indices I, J of SD’s and for the
fact that the summation on the orbital indices k, [/, ... is restricted to those
indices which appear in SD in consideration (the meaning of any other notation
remaining the same). Finally, since the minimum of E W, ...,oe™Mc, D
on D(E)AWin @ @Wypm @C:® - - - DCy, namely the Ritz-energy E,,
exists — as it can be immediately seen - since the infimum Eo of E(, ..., ¢",
c', ..., ¢") on D(E) is finite owing to the boundedness from below of H and
since Proposition 6 holds, the hypotheses (a), (c) and (d) of Theorem 1 are
satisfied. Thus we get (analogously to the SCF-RRM) the following sufficiency
condition for the E-convergence of the MCSCF-RRM.

Proposition 7:

If in the MCSCF-RRM, one takes as orbital bases, sets {¢,}n-1 complete in
Wi, i=1,..., M, then limu-c En = Ex.

3. {s-Convergence of the SCF-RRM
Concerning the - convergence of the SCF-RRM we have the following

Theorem 2:

(i) Suppose that complete sets in W} are taken as orbital bases.
Let (¢1, . . ., &h) be the Ritz-orbitals, namely the vector minimizing E W ...,
dN)on D(EYNn Wiy @ <+ ® Wi, and let {(Wn - -+, m) mmmyums (i > m if
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i>]) be the sequence of the Ritz-orbitals obtained by performing successive
SCF-RRM calculations.

(i) Suppose that (i, |¢,) =8, at each m.

Then the sequence {(Yh,..., ")} mem, contains a subsequence
{Wmrs -+ ) oms Such that

1;m®|¢in'—¢:;o|=o, i=1,...,N

being (see (2)) the ¢ orbitals which minimize E(¢', ..., ¢") on D(E) and ||
(see footnotes 1, 8) the norm of L?.
Proof:

As lim oo EWmy - - ., W) =lim 0 E. = Ex by Proposition 4 and E,,,, < E,, if
m; > m;, then there exists a dimension m, of the subspaces such that for any
m > my

E,.<Es+1.

Writing the explicit expression of E,, in this inequality, we get immediately

L nltdn)S1+Eo= X (mlowrm) =2 L (Wt W),

i,i=1

-

where W denotes the antisymmetrized w. '
This latter inequality, remembering that by (i) ¢, € Wi, yields, by (11) (where
we take b < 1), by (ii), by positiveness of w and definition (7)

[ 1+ Eoo + Na
WP <1+ —=— Vm>m, i=1,....N.
Hence the sequence {(fr, . . . , W)} om—m,, Which is bounded in L by construction,

is bounded in W too. Therefore it contains (cf. [22] p. 253) a subsequence
Wy oo U )} =m; convergent both in the weak-L topology and in the weak-W
topology to a vector!s (g, . .., X )eW. In other words V (¢%,, .., ¢~ )eW

lim (@' )= S T, L R, (12)
where (+,...,"|",...,") is the scalar product of W, and ¥(¢', ...., ¢ ) el

lim (@', " W md = B s U, (13)
where (-,...,|*,...,") is the scalar product of L. Since, as it is obvious, in

virtue of (12) the orbitals ¢ ., converge to Y, i=1,..., N, bothin the weak- W}

6 . oy o .
16 We denote this vector by (l//;c, . .//g) because, as we shall see shortly, it is a minimizing vector.
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topology and the weak -L; topology, it can be proved exactly as in [13] (see
also references therein quoted) that

(oo ltre) < Him inf (s |13)

Weotbio [ Wipisotlo) = Tim i (e |9 i),

and
(Weolvgio) = im (rwloiye).

Thus, remarking that also for the subsequence {(¢ 1., . . ., N Vo' =my it is
Hm E(w, ..., )= lim E=Ee,

we get

N . . 1 N . o
T Wl o)ty T (k)

N ; ; 1 N S S
= L lminf (|t 0)gm)+5 3 Hmint (Gt [9gm i)

i,j=1
<Lminf E(Wh, ..., ¢m) = lim EWh, ..., ¢%)=Ex. (14)

Now in [13] there is considered an extended energy functional, namely the
functional

N ) , 1 N L .
T Wlerout+s L @i

i,j=
on the set
M={@',....o")Wley=M;, 0=M;=<1, ij=1,...,N},

and it is shown that, in the case of N<Z +1 (where Z =Zf=1 Z, is the total
nuclear charge), it attains the global minimum at a vector W,..., ") with
<‘V|W> = 8

As this extended functional agrees with ours when Mj; =§;, then E is the
minimum not only of our functional E(¢', ..., ¢") but also of the extended
functional. Therefore, because in general (¢’ ¢l ) = M5y with0=M5 <1,i,j =
1,..., N, (cf. [13] Lemma 2.2) and hence (¢, ..., ¢=) € M, the relation (14)
yields the equation

N . X N . . . i
z Wl + o)) +3 L (Ueto|iaire) = Ex.

L=
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Recalling the general expression for E. which can be obtained from (4), we get
by the above equation

det {(¥ bt =1

0 ifk#l
1 ifk=1

0 if (pg) #(rs)

DIk, l]={ 1 if (pq) = (rs).

Dipa, 151~

These last equations imply, by well known properties of determinants and

matrices, that {(¢b|¢l)=8; and hence that (x,...,¥s) minimizes

EW',...,¢") on D(E). In other words we have proved that the subsequence

(s ... U ) Yoem; converges weakly, both in W and in L, to a minimizing
1 N .

vector (e, . . . , o) of our functional.

We complete the proof of this theorem showing that the subsequence
(W s U oremi converges strongly in L to (W, ..., ¥%). By (i) and by
the result proved above (o |k ) = 84, we have

Tm (s W) =W - )] (15)

where |(-,...,*)| (cf. (3)) denotes the norm of L. Now this convergence (15)
together with the weak convergence in L (13) imply (cf. [22] p. 253) the strong
convergence in L of {(¢ra, . .., Uh Vimiemi t0 (oo, . .., X)), ie.

Hm (W ey drm) = (o, - )| =0
or, which is the same,

im |¢m —¢o|=0, i=1,...,N.

4. Conclusive Remarks

The requirement of the completeness in W' of the orbital bases, in order to
ensure the convergence of the SCF-RRM and MCSCF-RRM, corresponds
exactly to the co-called Michlin’s criterion (cf. [9, 11]) of convergence of the
RRM in the CI method. In the case of that method, however, there exists a
more restrictive sufficient condition of convergence which was firstly derived by
Kato [8] and recently reconsidered in [9, 11] (in [9] it has been named Kato’s
criterion). Also in the SCF-RRM and MCSCF-RRM we can immediately derive
another sufficient condition of convergence which corresponds exactly to Kato’s
criterion. To this end, we define Vi € D(¢) the new norm

Nl = [ ]? + e[

By the same arguments in the proof of Proposition 2, it can easily be seen that
D(z) equipped with this new norm becomes the Sobolev space W>?*(R>; C?)
(i.e. the set of pairs {¢,, ¥} of complex-valued functions, with each function
belonging to the ordinary Sobolev space W>*(R?)). From now on, we shall
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brleﬂy indicate W**(R*; C?) by W?> (W>*(R?; C?) by W? )and W3R by
W2(R? (W**(R®) by W?(R?). As strong convergence in W? implies strong
convergence in'’ W', we get immediately that Proposmons 3, 6 remain valid
even if the spaces W; are replaced by the spaces W7. As a consequence of the
continuity of the energy functional in this new topology we can state that the
E-convergence of the SCF-RRM and MCSCF-RRM as well as the -conver-
gence of the SCF-RRM are guaranteed provided that one uses orbital bases
{d}2_, complete18 in W2,i=1, ..., N. Let us remark that both our conditions
for E-convergence and y-convergence are only sufficient and not necessary.
Therefore it is not excluded that E-convergence as well as -convergence can
take place, even when orbital bases {¢,}n-1 complete only in L? are used.
Furthermore, with regard to -convergence, as far as we know, no theorem
analogous to Theorem 1 exists, which explicitly states that the completeness
only in L] of orbital bases does not guarantee s-convergence. Thus, it seems
to us that the conditions for -convergence are less restrictive, and it might
happen that, by using in the SCF-RRM orbital bases {¢,}n~1 complete only in
L2, the ¢-convergence takes place and E-convergence does not. Anyway, such
a situation, although curious, would be explained by the discontinuity everywhere
of E(W', ..., ") in L. In fact, in this case the convergence in L of (s, . . ., /)
t0 (Yoo, - . ., ) does not imply the convergence of E,, t0 Ew.

Our sufficient criterion of convergence is valid for arbitrary atoms and molecules,
and it requires for the latter the completeness in wli=1,..., N, of one-centre
orbital bases only. If this is the case, the addition of other orbital bases (even
if not complete in W) centered at different sites, does not destroy the conver-
gence, but, on the contrary, increases its speed. Therefore the convergence is
always ensured by our criterion in molecular calculations, performed by using
many-centre orbital bases (so as in the usual calculations where the bases are
centered at the nuclei of the molecule), provided that at least one set of one-centre
orbital bases (no matter where it is centered) is complete in wl.

As to the analysis of the completeness properties in the spaces here introduced
of the orbital bases mostly used in SCF-RRM and MCSCF-RRM calculations,
we refer the reader to the exhaustive study performed by Klahn and Bingel [10].
We remark only that those authors indicated by Ha (R ) and Ha2(R?) the Sobolev
spaces here denoted by W' (R?) and W?*(R?), respectively, and that they studied
completeness property of spatial orbital bases only since the introduction of spin
changes nothing (cf. [9] p. 21 and footnote'” of the present work).

7 The imbedding of WA(R®) in WY(R?) (ct, [19]) implies the imbedding of W? in W'. More
generally, any properties involving convergence (as completeness property) which hold for the spaces
W2(R?) and W'(R?) disregarding the spin remain valid for our spaces W? and W', which take
into account the spin. This follows easily from expression (9) for the norm of W and from expression
llldfll\ ([l + M-Iy’ for the norm of W>.

Since completeness in W2 implies completeness in W' (see footnote'”), this latter convergence
criterion is included in the former.
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In the actual calculations the orbitals, as we said, are generally restricted to
being products of space and spin functions. In this case the energy functional
depends only on the spatial part of the orbitals. Hence the spaces L}, W} and
W3, which take into account the spin, are replaced by the spaces LI(R?), Wi (R?
and W? (R 3), which neglect the spin. It is immediately seen that, even with this
replacement of spaces, everything said in this work remains valid. In particular
we can state that if — in the case of orbitals products of space and spin functions
— one takes, as orbital bases, sets {cbﬁl}ff:l complete in WH(R?), then the
E-convergence of the SCF-RRM and MCSCF-RRM and the ¢-convergence
of the SCF-RRM are ensured. However we remark that now, since we have
orbitals restricted to being products of space and spin functions, the Ritz-energy
E,. converges to a value E{, which is the infimum of the energy functional on
such a more restrictive class of orbitals and hence can be in general greater than
the infimum E. previously considered. Analogously, the Ritz-orbitals
(YL, ..., ) are convergent to orbitals ($loy ..., YY) which can merely be a
local minimum and not a global minimum. The spatial part of the orbitals is
expanded mostly in terms of Slater or Gauss functions [2]. However, a widespread
belief [1, 2, 16-18] is that arbitrary orbital bases, as long as complete (on a
topology which indeed is never specified, but understood to be that of L3 (R?),
could be safely used without loosing the convergence of calculations. In virtue
of the results of this work we can state that this belief is mathematically
groundless. Klahn and Bingel [10] derived some sufficient conditions on the
orbital exponents of Slater and Gauss functions, in order that sets of these
functions turn out to be complete in W>*(R?) and hence in W'(R?). Those
conditions also ensure the E-convergence of the SCF-RRM and MCSCF-RRM
as well as the -convergence of SCF-RRM. In particular, when the set of Slater
functions

{r' exp [~&(n, Dr]Yim(6, $)} foralln=1,1=0,|m|=I (16)
is taken as orbital basis, the above convergences are guaranteed if

(I) The sequences of positive numbers {£(n, )}, -1 have an accumulation point
E() with 0< ¢(l)<oo foreach 1=0,1,2,....

When it is taken as orbital bases the set of Gauss functions

{r' exp [—&(n, Dr*1Yim(6, )} foralln=1,1=0,|m|=], (17)
then the convergence of the SCF-RRM and MCSCF-RRM is guaranteed either
if (I) holds or if

(I) the sequences {¢(n, 1)}~ of positive orbital exponents for each ! have a
subsequence {£(n’, [)},7—1 decreasing monotonically to zero with ¥, £(n’, [) = 0o,

Recently[17, 18, 25] the problem of using extended bases built up from functions
from the sets (16) or (17} has been investigated in atomic and molecular calcula-
tions. In those works the employment of such bases is made feasible because m;
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orbital exponents £(n, [) of symmetry [ are generated by means of the Raffenetti’s
formula [26]:

§(n, l)=alB7 a; >0, Bi>1, =1,...,m. (19)

However, at variance with the Raffenetti’s method the coefficients «; and B; are
not determined by optimization, but either by a formula [18] in some way
empirical, or quite arbitrarily [17, 25]. Anyway, in both cases it is supposed that
such choices of ¢; and B; ensure the convergence of calculations. Now, in virtue
of the above mentioned results (I) of Klahn and Bingel and in virtue of the
results of the present work we can state that the convergence of SCF—-RRM and
MCSCF-RRM calculations by taking as orbital bases Slater or Gauss functions
with orbital exponents generated by (19) is guaranteed whenever:

0<a; <00 and 0<B;=1, foreachl (20)

Let us finally remark that the above condition on 8, is satisfied neither by the
Raffenetti’s formula (19), nor by the choices in {17, 18, 25]. However, as we
said, the convergence might take place also with choices of 8; different from (20).
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