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We investigate the analytical convergence of SCF and MCSCF calculations, 
when the dimension of the subspaces to which the orbitals are restricted 
tends to infinity. We show that the completeness only in LZ(R3; C 2) of the 
orbital bases does not ensure the convergence of the Ritz-energy, neither in 
SCF nor in MCSCF calculations, but that this convergence - as well as the 
convergence of the Ritz-orbitals in SCF calculations - is on the contrary 
guaranteed if the orbital bases are complete in the Sobolev space W1'2(R3; 
C2). Some consequences on the choice of the orbital exponents of Slater and 
Gauss functions are also discussed. 
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1. Introduction 

During the past fifteen years, calculations of atomic and molecular structure 
have had a great development and brought relevant contributions to quantum- 
chemistry. Most of such calculations are variational and are carried out, as it is 
well known [1, 2], following three general procedures: 

(A) Configuration Interaction (CI) Method 

The electronic wave function 'Ire is written as ~ = 1  c t ~  r, where ~ are fixed 
Slater determinants (SD) and c r complex coefficients to be determined to 
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minimize the energy  funct ional  1 

E(%) = 1%12 

In  this equat ion,  the opera to r  

~ ( h2 ~ e2Z~ I e 2 
H = -~m Ai- + E -- 

i = 1  a = l  ria ] i<i rii 

is the B o r n - O p p e n h e i m e r  Hami l ton ian  for N electrons and K nuclei 2, where  

Za is the charge of nucleus a, r,a-lre-Ral and rej-lr,-rjl (ri and Ro being 
posit ion opera tors  of electron i and nucleus a, respectively). 

(B) Self-Consistent-Field (SCF) Method 

We is writ ten as a single SD, �9 = (1/N!) w2 det {tp I . . . . .  t~N}, where  the one-  
particle wave functions (orbitals) ~i are de te rmined  to minimize E(~e). 

( C) Multiconfiguration Self-Consistent-Field (MCSCF) Method 

XI~t e is wri t ten as in (A), but  in this case bo th  the complex numbers  c t and the 
orbitals ~i, used to construct  the SD ' s  ~ ,  are de te rmined  to minimize E (~e ) .  

These  methods ,  however ,  have not  complete ly  been  studied f rom a r igorous 
mathemat ica l  point  of view. Such a study, in our  opinion,  matters  not  only 
because  it provides  the necessary mathemat ica l  foundat ion ,  but  also because it 
allows the utilization of some results of the minimizat ion theory  [3, 4] and of 
the approximat ion  theory  in Banach  spaces [3, 5], which could improve  precision 
and reliability of calculations. W e  think that  the main  problems which should 
be studied to reach this aim are the following: 

(1) Existence of the global min imum of the functional  E(XI~e) o n  each set 
considered 3 in (A)-(C).  
(2) Convergence  4 of the numerical  methods  used for the approximate  de termina-  
t ion of this minimum. 
(3) Es t imate  for the er ror  of the approximat ions .  

In  the CI  me thod  to our  knowledge,  the problems (1) and (2) have been  solved, 
but  not  (3). By this me thod  in fact, approx imated  eigenvalues and eigenvectors  
of H are determined.  Therefore  the min imum existence p rob lem in quest ion is 
equivalent  (cf. [6] p. 6) to the existence p rob lem for  the discrete spect rum of 
H,  which, as it is well known has been  already solved [7]. The  numerical  me thod  

1 From now on we shall denote by (. I' ) and I" [ the usual scalar product and norm of each space 
L 2 considered in this paper. 
2 Of course, the atomic Hamiltonian is obtained for K = 1. 
3 That is to say: existence of a wavefunction ~*, belonging to the set in question, such that 
E(~*e)<--E(~e) for all ~e of the set. 
4 In this paper by convergence we mean analytical convergence and we shall not be concerned 
with the related numerical problems. 
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used is that of Rayleigh-Ritz and its convergence properties have been studied, 
from thirty years ago [8] up to now [9-12]. 

In the case of SCF method the minimum problem is the one of E ( ~ e )  on the 
set S of SD's, and the related existence problem has been solved recently [13]. 
The numerical procedure more widely used 5 consists in writing the orbitals ~i 

~ m  i i " i oo as n=l Cn4~n, where the functions 4~'n belong to some complete sets 6 {~b~}~=l, 
i = 1 . . . . .  N, (orbital bases) and then in determining the N m  coefficients c~ to 
minimize E(~e) .  To reach this aim, usually the matrix form of the Har t ree-Fock  
equations (cf [1, 2]) is solved, or direct minimization methods for E (~e )  [1, 14] 
- or also other numerical methods [15] - are used. Anyway, since (whatever 
is the numerical method adopted) an approximate minimization of E (~e )  is 
eventually performed by restricting the orbitals to m-dimensional subspaces, 
the above procedure is nothing but the Rayleigh - Ritz method (RRM) applied 
to the minimization of E (~e )  on S, as it will be specified better in Sect. 2. In 
account of this, we shall denote such numerical procedure by SCF-RRM. The 
R i t z - e n e r g y ,  as well as the R i t z - o r b i t a l s  7 depend on the dimension m of sub- 
spaces. Therefore  it arises the problem of the convergence of these quantities to 
the infimum of E (~e )  on S and to the orbitals minimizing exactly E (~e )  on S, 
respectively, when m ~ ~ .  This convergence, to our knowledge, has not been 
yet rigorously proved and is generally assumed (cf. [1] p. 116, [2] p. 6, [16] 
p. 1498, [17] p. 3787 and [18] p. 3958). 

Concerning the problem of the estimate of the truncation error, which is of great 
practical interest in order to estimate rigorously the Har t ree-Fock limit, we have 
a similar situation, since up to now this problem has not been faced in a rigorous 
mathematical way, but only within a somewhat empirical framework [18]. 

In the case of MCSCF method, the minimum problem is to minimize E ( ~ )  on 
the subset of $1 x .  �9 �9 x SL X C1 x .  �9 �9 x CL (where C is the complex field and x 
denotes the Cartesian product  of sets) described by the linearly independent 
SD's {~1 . . . . .  'trL}. As far as we know, the related existence problem has not 
been solved yet. The numerical procedure used is again the RRM as it was 
described in the SCF method. Therefore  we shall denote such procedure in this 
case by MCSCF-RRM. Hitherto,  neither the convergence properties nor the 
error estimate in the MCSCF-RRM have been studied. Out of the foregoing 
unsolved problems we shall consider in this paper only the convergence of the 
SCF-RRM and of MCSCF-RRM; the remaining problems will be considered 
in forthcoming papers. 

We shall call, according to [9], the convergence of the Ritz-energy to the infimum 
of E(g~e) and the convergence of the Ritz-orbitals to those ones minimizing 

5 For atoms, however, the numerical integration of the Hartree-Fock equation is often used. 
6 Here we consider in general different orbital bases for different orbitals. However for molecules, 
we confine ourselves to consider one-centre orbital bases, since all results of this paper deduced in 
this case remain valid, as we shall see in Sect. 4, also in the case of many-centre orbital bases. 
7 By Ritz-energy and Ritz-orbitals we mean the value of the minimum of E ( ~ )  and the correspond- 
ing minimizing orbitals, respectively, when the orbital bases are truncated at a finite value m. 
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E(Xl~e) , when m ~00, E-convergence and 0- convergence, respectively. In this 
paper, for reasons which we shall show in the next section, we take into account 
the spin without restrictions, and thus our orbitals 0 i are always supposed to be 
spinorial functions, namely pairs {0/+, 0 / }  where 01+, 0 ~_ are complex-valued 
square-integrable functions. The corresponding Hilbert space will be denoted 
as in [13] by 8 L2(R3; C 2) (R indicates the real numbers and C the complex ones). 

In this work we shall prove that the completeness only in the space L2(R3; C 2) 
of the orbital bases i o~ {4~n},=~, i =  1 . . . . .  N, is not sufficient to guarantee the 
E-convergence,  neither in the SCF-RRM nor in the MCSCF-RRM, but that 

i co 
the E-convergence is on the contrary ensured in both cases if the sets {~bn}n=l 
are complete in the Sobolev spaces 9 WI'2 (R 3; C2). More  precisely we shall show 
that our more restrictive completeness condition guarantees, in the SCF-RRM, 
both the E-convergence and the 0- convergence (in the norm of L2(R3; C2)). 
In the MCSCF-RRM,  since the problem of the existence of a global minimum 
of E(We) on the subset of $1 x . .  �9 x S L  X C 1  x .  �9 �9 x C L previously specified has 
not yet been solved, we can show only that the completeness in the space 
W~ '2 (R 3; C 2) of the orbital bases guarantees the E-convergence.  Our sufficient 
condition of convergence corresponds exactly to that one of the RRM in the CI 
method in the form given in [9-11], and implies just the same conditions on the 
choice of the orbital exponents of Slater and Gauss basis functions in order to 
ensure the foregoing E-convergence and 0- convergence. However  the procedure 
for determining it as well as our proof of E-convergence and 0-convergence,  
are completely different from those of the CI case, because (although in both 
cases it is a matter  of convergence of the RRM) the two convergences are actually 
very different. In fact the convergence problem of the RRM in the CI method 
is equivalent to the convergence problem of the RRM in an eigenvalue equation 
(Schr6dinger equation), while our convergence problem is equivalent to the 
convergence problem of the RRM in pseudo-eigenvalue equations (Har t ree-  
Fock equations in the SCF-RRM and Fock-like Eqs. [20] in the MCSCF-RRM).  

Our results concerning the E-convergence,  both of the SCF-RRM and of the 
MCSCF-RRM, will be obtained in Sect. 2 in the framework of the minimization 
theory. The 0-convergence of the SCF-RRM will be proved in Sect 3, by using 
some results of [13]. In Sect. 4 we shall discuss some implications of our results 
in current calculations. 

2. E-Convergence of the SCF-RRM and of the MCSCF-RRM 

For the sake of clearness and simplicity, we firstly consider the problem of the 
E-convergence of the SCF-RRM, and we start on this section by introducing 
mathematical preliminaries and notations relevant to this problem only. In the 

s Obviously the norm and the scalar product in L2(R3; C 2) are given by I~b~l = (ttb~ 12+ lib ~- 12) 1/2 
and (~bi]0 i} = (&~ I&~-) + (&~-10~- ), respectively. 
9 1,2 3 2 Wi (R ; C ) denotes the set of pairs {0~-, tP/-} with ~+, ~b / belonging to the usual Sobolev space 
(cf. [19] p. 44) W~ '2 (R 3). It is easily seen (by the same arguments as in footnote 17) that completeness 
in W] "2 (R3: C 2) implies completeness in L/2(R3; C 2) but the converse is not true. 
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final part  of this section we shall show that the problem of E-convergence  of 
the M C S C F - R R M  is immediately solved as an easy generalization of the SCF- 
R R M  case. In Ref. [13] it was shown that, in general, the energy functional 
achieves a global minimum on the set of SD's  if the orbitals are spinorial functions, 
and not if, as in practical applications, they are restricted to being products of 
spatial and spin functions. On the latter more restrictive class of orbitals, there 
exists a minimum but it is not known whether  it is a global minimum or merely 
a local minimum. For this reason we have supposed here that the orbitals 0 ~ are 
in general pairs {01+, ~/} ,  0~+, ~ i  ~ L 2 (R 3). The corresponding Hilbert  space has 
been previously denoted by L~(R3; C2), however,  f rom now on, for brevity 's  
sake, we shall denote  it simply by 1~ L 2. The whole Hilbert  space of N-e lec t ron  
wavefunctions of space and spin will be represented instead as in [13] by 
L2(R3N; c2N). As we shall see bet ter  in Sect. 4, each result concerning the 
E-convergence  and 0-convergence derived by us for orbitals belonging to L~ 
will be valid also for orbitals products of space and spin functions. We set briefly, 
f rom now on, 

h2 ~ e2Z"  e 2 
-2---m Ai -- tl, - - vi and - - - - - - - -  wlj. 

,==1 ri~ Ir ,-r j l  
Recalling that in the S C F - R R M  the electronic wavefunction is approximated by 
a single SD 

= ( N ! )  -1/2 det {~1 . . . . .  0N}, 

we denote in this case by E(0* . . . . .  0 N) the energy functional. Although 
E(01 . . . . .  0 N) is actually a functional in L2(R3N; C2N), it is more  convenient 
to the aim of this paper,  to regard it as a functional in the space I_ = L~ Q .  �9 �9 O L ~  
(0"c  L~) ( G  indicates the direct sum of vectorial spaces). In this space the SD's 
�9 = (N!) -1/2 det {01 . . . . .  0 N } #  0 are represented by the vectors (01 . . . . .  0 N) 
with linearly independent  0 i, and the domain D ( E )  of E(01 . . . . .  0 N) by the 
subset of such vectors which belong to Q l ( t )G"  �9 �9 @ ON( '~. We recall that O (t) = 
{ 0 : ( 0 ] t 0 ) < m }  is the quadratic form domain of t (cf. [21], p. 277), and that in 
our case O( t )  = D ( t  1/2) and 11 

(0/It0 i) = ( t l /2Otlt l /24fl)  vOi ,  O i ~ D ( t  1/2) (1) 

(cf. [22] p. 331). Here  t 1/2 is the square root of t and D ( t  1/2) its domain. The 
uselfulness of regarding E ( 0  ~ . . . . .  0 N) as functional in L lies in identifying easily 
and rigorously the S C F - R R M  as a particular case of the R R M  ~2. To reach this 
aim in fact, it is sufficient to consider L as the Banach space on which the method 
is applied and to consider as subspace where E(01 . . . . .  0 N) is minimized that 

10 Whenever the orbital index i is not relevant we shall denote the space L2(R3; C 2) simply by 
L 2. The symbol L 2 should not be confused with the symbol of the usual Hilbert space of only spatial 
orbitals. For the sake of clearness this latter space will be denoted by L2(R 3) or L2(R3). 
n This property, as well as other properties of linear operators in Hilbert space which we shall 
use, are proved in the space L2(R3), but, as it is seen immediately they remain valid in the space L z. 
12 For a rigorous definition of the RRM, see [3] or [4]. 
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one spanned by m elements of the complete system in 13 
L:  {(r  . ,  0 ) . . . ( 0 , . .  N oo , , - .  . ,  4~, )},=1. We shall denote by E~  and by (0~ . . . . .  0 ~ )  
the infimum o f  E ( O  1 . . . .  , O N) on D(E) and a minimizing vector, respectively, 
namely: 

Eoo=-E(O 1 . . . . .  0 ~ )  = inf E ( 0  5 . . . . .  W/v). 
D(E)  

(2) 

Now we give a sufficiency condition for the E-convergence of the SCF-RRM 
by means of a theorem [3, 4] of minimization theory concerning the convergence 
of the RRM in general. For reader 's convenience we report  this theorem here. 

Theorem 1: 

(a) Let  O be any set in Banach space X and let F(x) be a continuous functional 
o n  Q.  

(b) Let  {~b,},~l a complete system in X. 
(c) Suppose there exists a vector x,~ ~Lm 71 O, where Lm is the m-dimensional 
subspace spanned by {d05 . . . . .  qbm}, so that minxEL~O F(x) = F(xm) =-Fro. 
(d) Suppose that inf~Eo F(x) = F~ is finite. 
Then lim,,_.~ F m= F~o. 

In other words this theorem guarantees, so long as (c) and (d) are satisfied, that 
the sequence of the Rayleigh-Ritz upper bounds Fm converges to the infimum 
F~, if it is used a basis set complete in the norm topology with respect to which 
the functional in question turns out to be continuoug~ Now, in our case, (c) and 
(d) are satisfied, as can be seen easily. However,  concerning (a) we have the 
following 

Proposition 1: 

The functional E(01 . . . .  , W/v) is not continuous in L, namely in the topology of 
the norm of L 

1(0 5 . . . . .  0N)I--  ( 1 s  + lo/vl2) (3) 

at any (01 . . . . .  O/v)sD(E). 

Proof: 

Remembering a well known formula (cf. [23] p. 1480) for the matrix elements 
of an operator  with respect to two SD's, we can write 

N N 
5~ (Okl(t +v)Ol)D[k, I ]+ �89  (OPOqlwOrOS)D[pq, rs] 

k,l= 1 pq 

E(01 . . . . .  oN) rs 
det {(0;[0J)} , (4) 

i c c  13 We recall that by {&,}~=t, i = 1 , . . . ,  N, we are denoting the basis sets (momentarily supposed 
complete only in L 2) in terms of which the orbitals are expanded. 
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where D[k, l] is the first rank minor assigned to the k - row a n d / - c o l u m n  of the 
matrix {{O~]Oi)}, i, / = 1, 2 . . . .  N, and D[pq, rs] is the second rank minor of the 
same matrix assigned to the p, q-rows and r, s-columns and antisymmetrized in 
these indices. Now we consider the sesquilinear form (OkttOz). Owing to the 
unboundedness  of t in L 2, it is not bounded in k and thus two sequences {0~}~=~ 

l c o  
and {0,},=~ exist such that 

k l k I k I (0. Ito.) = c . c .  10.11~.  I (5)  

where c~- .oo  and cl. --> oo. 
f . l  t k l  ~ f . l  t l l  ~ By defining, V(~01 . . . . .  O~)~D(E) ,  the new sequences ~u,, ~,=1 and ~ , ~ , = 1 ,  

where 

which are strongly convergent  in L 2 to 0o k snd 01o, respectively, we get by (5) 

t k  t l  
lim (0n ]tO,) = 1 +(O~]tO~o). 
n -~ cx) 

Therefore,  recalling the well known definition of continuity (cf. [21] p. 6), the 
�9 �9 k sesqmhnear  form (0 ]tO I) is not continuous in L at any (0n . . . . .  0o N) ~ D(E).  Just 

the same proof  can be carried out for the sesquilinear form (OklvOt). 

In the case of (r rO ") we can fix 0 ~ and 0 r (~P and 0 ' )  in order to get, 
using the same proof as above, that (OPOq]wOrO s) is not continuous in L with 
respect to 0 p and 0s (0  q and 0r), and hence with respect to 0 p, 0 q, 0 r, ~0 s at any 
(4'~ . . . . .  0~) ~ D(E).  Thus by taking into account (4), the proposit ion is proved. 

We remark  that the hypothesis (a) of Theorem 1 can be weakened (cf. [4]) 
requiring that F(x) is only semicontinuous f rom below on O. However  also this 
weaker  condition is not satisfied by E(~01 , . . . ,  0N). We omit  the proof  of this 
s ta tement  for the sake of brevity. 

i c o  
As a consequence, we have that the use in the S C F - R R M  of orbital bases {&n}, =a 
complete only in L~ (or - this is the same - of basis sets 

. . . .  �9 �9 �9 ,e.  Js.=~ complete only in L) is not sufficient to ensure 
the E-  convergence�9 

In order to satisfy the hypothesis (a) of Theorem 1 in our case, we introduce a 
new topology on L with respect to which E(t# ~ . . . . .  0 N) becomes continuous. 

Proposition 2: 

Set, 

VO, & ED(tl/2)=--O(t), 

( ~ 10) = (q~ It)) + (tl/2~ [tl/20) 

I1 ,112 = f ,12 + It1%12 

(6) 

(7) 



540 G. Fonte 

where (see footnote 8) (.1.) and I'l denote scalar product and norm of L 2, 
respectively. Then expression (6) defines on O(t) a new scalar product and O(t) 
becomes, in the topology of the new norm (7), the Sobolev space ~4 wl'2(R3; C2). 

Proof: 

Since t ~/e is a closed operator  from L 2 to L 2, the proof of [24] p. 207 holds 
equally well here. Taking into account footnote 8 and the definition of the space 
WI(R 3) (cf. [19] p. 44) we get 

(~ IO) = (4}+10+) + (4'-10-) (8) 

and 

110112 = Iio+112 + I Io- l r ,  (9) 

where (6•177 and [I0• are the scalar product and norm of WI(R3), respectively. 
Thus the proposition is proved. 

Proposition 3: 

Let  us denote by W the space W] | . . . . .  | W~(O ~ e W~ ), then E(O a . . . . .  O N) 
is continuous in W, namely continuous in the topology of the norm of W 

II(O', �9 �9 �9  O~)l l  = (11@112 + . "  + IIOUll2) ~/=, (10) 

at a n y  (0 1  . . . . .  O N )  u::: D ( E ) .  

Proof: 

In virtue of expression (4) the proposition will be proved if we shall show the 
cUontinuity in W of (Okltol), (0kIV0 t) and (OPOqlwOrO s) since the continuity in 
W of D[k,l],D[pq, rs] and det {(0~]0i)} is obvious. Let  {(01,,...,0~)}n=IN { a 
sequence belonging to D(E) and strongly convergent in W to (001 . . . . .  ON) 
D(E), then, as easily can be seen ~5, (e) 0~,-~ 0~ (f) t~/20~ ~ t1/20~o in L~ and (g) 

i ] i i 1/2 i J 2 
+t )  OnOn -' O.O. ~OoOo (h) (t (t+t)~/20~Oio in L~ |  By (1) and (f) we get 

lim k t ~/2 k 1/2 1 (O, ItOn) = lim it Onlt O,)=(tl/2Okoltl/2Oto)=(O~ltO~o). 
n ---~ oo n ---~ oo 

B y  the inequality 

(Okl - d ) -  ((Okl - vO~))I/2((oll- vl0')) 1/2 

(cf .  [ 2 2 ]  p .  310), by the t-boundedness of - v  in the quadratic form 

(OI-vO)<_alOI2+b]tl/20I 2, a, b > 0 ,  V 0 ~  W 1 (11) 

14 From now on, we shall denote the space Wl'2(R3; C 2) simply by W 1 and, when the orbital 
index i is relevant, by W~. The usual Sobolev space of spatial orbitals will be always denoted by 
W~ (R 3) or WI(R3). 
t5 The symbol ~ denotes here strong convergence. 
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(cf. [22] pp. 302, 321), and by (e) and (f), we get 

k l k l 

n - ~ O o  

= - ~ o l v ( ~ .  ~ ) > + < ~ . ~ -  ~ ' - 6o I~,o > + <6o I~ (o'. - ~'o))1 

-< lim { ( (4J .  k - ~ o ~ 1 - v ( ~ -  ~o~)>)~/2(<~'~- ~ 5 1 - v ( ~ -  ~5)>)~/= 
n --~oo 

Finally, by the inequality 

(e,%"lw6re/) <_ ((6re/lw6r6s))~/~((r , 

by the (t + t ) -boundedness  in the quadratic form of w 

(~,~Oqw~J)<-a'W~lZ +b'l(t +t)l/2~O'4/I 2, a', b'>O V~', ~' ~ W ~ 

(cf. [8] p. 203 and [22] p. 321), and by (g) and (h), we get exactly as above 

p q r s p q �9 s 
lim [ ( t p ~ O ~ l w ~ O ~ ) -  (0o~o [WgtoOo)l = O. 
rt  -->oo 

Thus the proposit ion is proved. 

Now the S C F - R R M  can be identified as a particular case of the R R M  of Theorem 
1, by taking as Banach space X the space W, as basis {~,},~=a the set 
{ ( ~  . . . .  0) (0 , . .  ~ ~ �9 . . .  . ,  ~b,)},=l which is complete in W if the orbital bases 

i o o  
{~,},=1 are complete in W~, and as subspace Lm the subspaee W ~  O ' "  G 
W~m, where the W~m are the m-dimensional  spaces spanned by { ~  . . . . .  (k~}. 
As the set {(qS~,, . ,  0) (0 , . .  N �9 " " " . & ~ )}, = ~ is complete in a topology with respect 
to which, by Proposit ion 3, the functional E ( ~  ~ . . . .  , ~0 N) turns out to be con- 
tinuous, we have, denoting f rom now on by Em the Ritz-energy, namely the 
minimum of E(th ~ . . . . .  4J N) on D ( E )  r~ W~,~ | �9 �9 �9 | W ~ m ,  the following 

Propos i t i on  4 : 

i If in the S C F - R R M  one takes as orbital bases, sets { ~ } , = 1  complete in W~, 
i = 1 , . . . ,  N, then lim m-.~ E m =  E~.  

Now we consider the E-convergence  of the M C S C F - R R M .  In this case the 
N-elec t ron  wavefunction is written as ~ = 1  cI~ r, where the ~0 t are the L linear 
independent  SD's  which can be built by the M orbitals {tp 1 . . . . .  ~M} (M > N ) .  
The energy functional depends, thus, both on the orbitals {4/ . . . . .  ~O ~} and the 
complex numbers  {c 1 . . . . .  c L}, and therefore,  we shall denote  it by E(~01 . . . . .  4J M, 
c ~ . . . . .  cL). The M C S C F - R R M  differs from the S C F - R R M  only formally, and 
all what we said for the latter can be repeated here, provided that the space L 
is replaced by the new space L~ G �9 �9 �9 (~ L ~  G C1 �9 �9 �9 �9 �9 CL and the space 
W by the new space W~ |  �9 W ~  |  |  
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More  precisely, we have the following propositions: 

Proposition 5: 

The functional E ( O  1 . . . . .  ~0~ c a . . . .  , c L) is not continuous in L~ O �9 ' �9 OL~t  �9 
C1 �9 �9 �9 �9 O C L  at any (~1 . . . . .  oM, C 1, . . .  , C L) belonging to its domain D ( E ) .  

Proposition 6: 

The functional E ( 0  t . . . . .  0 %  c ~ , . . . ,  e L) is continuous in W~ �9 " �9 O W 1 �9 
C~ 0 " "  �9 CL at any ( ~  . . . . .  ~ c ~ . . . . .  e L ) ~ D ( E ) .  

We shall not give detailed proof of these propostt ions because it follows f rom 
an easy extension of the proof  of Propositions 1, 3. In fact, it is sufficient to 
replace (4) by the new expression 

E(@, 4, ~ c ~ c L ) =  

L I 3.*[,r p q r s "~ 
Z c c [ L ( O k t l ( t + v ) O t j ) D u [ k , / ] + Z  (~OzOzlWO'fl[tj)DH[Pq, rs] 

J I J  = 1 \ k l  Pq 
r$ 

L 

cIc ]* det i i {(~,,1r 
, 3 = 1  

which differs f rom (4) for the summation on the indices/ ,  J of SD's  and for the 
fact that the summation on the orbital ind~ces k, l . . . .  is restricted to those 
indices which appear  in SD in consideration (the meaning of any other notation 
remaining the same). Finally, since the minimum o f  E ( O  1 . . . . .  t~ M, c 1 . . . . .  c L) 
on D ( E ) n  a . . . . . .  Wlm G O W~t,, O C 1 0  OCL, namely the Ritz-energy Era, 
exists - as it can be immediately seen - since the infimum E~o of E(01 . . . . .  0M, 
c a . . . . .  c L) on D ( E )  is finite owing to the boundedness f rom below of H and 
since Proposition 6 holds, the hypotheses (a), (c) and (d) of Theorem 1 are 
satisfied. Thus we get (analogously to the S CF-RRM)  the following sufficiency 
condition for the E-convergence  of the MCSCF-RRM.  

Proposition 7: 
i oo 

If in the M C S C F - R R M ,  one takes as orbital bases, sets {4~n},=l complete in 
W~, i = 1 . . . . .  M, then lim,,_~o~ E m =  E~.  

3 .  0 - C o n v e r g e n c e  o f  t h e  S C F - R R M  

Concerning the ~b-convergence of the S C F - R R M  we have the following 

Theorem 2: 

(i) Suppose that complete sets in WI are taken as orbital bases. 
Let  (0~, �9 �9  0~ )  be the Ritz-orbitals, namely the vector mln lmmng  . . . .  E(61 . . . . .  

1 t9 ~r) on D ( E )  n W~,~ G �9 WN,~, and let {(0~, �9 �9 n �9 �9 �9 . ,  0 m ) }  . . . . . . . .  (mi>mj if 
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i > j )  be  the sequence  of the Ri tz-orbi ta ls  ob ta ined  by pe r fo rming  successive 
S C F - R R M  calculations.  

i i (ii) Suppose  that  ( 0ml0 , , )  = &i at each  m. 
T h e n  the sequence  {(0~, �9 �9 �9 -~,*,,m=,n~'t'N~d~ contains  a subsequence  

. . . .  0m')}m'=,q such that  

l im ] 0 ~ , - 0 L [ = 0 ,  i = 1  . . . . .  N 

being (see (2)) the 0 ~  orbitals  which minimize  E ( 0 1  . . . . .  O N) on D(E) and ]. I 
(see foo tno tes  1, 8) the n o r m  of L~. 

Proof: 
�9 1 As llmm--.~ E ( 0  . . . . . .  0 ~ )  ~-- limm_.~ E,~ = E ~  by  Propos i t ion  4 and Em, <E,,~ if 

m~ > mj, then  there  exists a d imens ion  rnk of the subspaces  such that  for  any 
m>mk 

Em < E o o +  1. 

Wri t ing the explicit express ion of Em in this inequali ty,  we get immedia te ly  

N N N 

( 0 m l t 0 ~ ) <  I + E ~  - Y. E i i i i 1 i j ~ i i 
- (0 0. IW0m0 n), 

i = 1  i = 1  i , i = l  

where  k deno tes  the an t i symmet r ized  w. 
This  la t ter  inequali ty,  r e m e m b e r i n g  tha t  by (i) 0 ~  ~ W~, yields, by  (11) (where  
we take  b < 1), by (ii), by posi t iveness  of w and definit ion (7) 

1 +E~o+Na 
110/112--<1+ 1 - b  ' Vm>mk, i = 1  . . . . .  X. 

H e n c e  the  sequence  {(0~, ' t 'u~d~ which is b o u n d e d  in L by construct ion,  �9 . . , , ~ l m , , J m = m l ,  

is b o u n d e d  in W too.  T h e r e f o r e  it contains  (cf. [22] p. 253) a subsequence  
N 

. . . .  0,n ')}m'=,q convergen t  bo th  in the weak-L  topo logy  and in the w e a k - W  
topo logy  to a vec tor  16 ( 0 ~  . . . . .  0 ~ )  ~ W. In o ther  words  V (q~l . . . . .  ~b u)  e W 

lim (61 . . . . .  6NI0~ , ,  . . . .  N,) = (&l . . . . .  &N]01  . . . . .  o N ) ,  
r t l ' ~o0  

(12) 

where  ( . ,  . . . .  �9 [ . ,  . . . .  .) is the scalar p roduc t  of W, and V(4~ 1 . . . . .  , ~bN)~/. 

l im (q~l . . . . .  ~ N I o I , . .  ' o N , )  = ( 6 1  , q ~ N I o L ,  I / / N ) ,  
m'--,  oo ' . . . . . .  ' 

( 1 3 )  

where  ( . ,  . . . .  " I ' ,  . . . .  .) is the scalar p roduc t  of k. Since, as it is obvious,  in 
vir tue of (12) the orbi tals  0 ~ '  converge  to 0 ~ ,  i = 1 . . . . .  N, bo th  in the w e a k - W ~  

16 We denote this vector by (0~, u � 9  &~) because, as we shall see shortly, it is a minimizing vector�9 
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topology and the weak -L 2 topology, it can be proved exactly as in [13] (see 
also references therein quoted) that 

(0~ [tcO~) --< lim inf (0~, laG,,) 
m ' - ~ c o  

i j ~ i i �9 �9 i j ~ i i (O~Ooo ]w~oot~oo ) --< hm lnf (O~'Om' ]WO~'Om'), 

and 

( 4 & l v ~ > =  ' / ' lingo (~[lm' [IJfflm' ) �9 
m '  oo 

Thus, remarking that also for the subsequence {(0~', N co . . . .  Om')}m'=~ i it is 

lim E(6~, ,  . . . .  0 ~ , ) ~  lim E.,,=E~o, 
rn'--> co ml--> ~ 

we get 

N 

E ( ~ l ( t §  E , J - /  i 
i = 1  z ,  / , ] = 1  

N / 1 N i i - i i 
lim inf ($m,~O m, [ wO.r 

i = 1  t 1 m ' ~ C C  

-< l iminf 'E(6~ , ,  . . . .  ~O~,) = lim E(6~ , ,  . . . .  ~ , )  = E ~ .  
m t.--> c~ rtt r..-> oo 

(14)  

Now in [13] there is considered an extended energy functional, namely the 
functional 

N N 

E (~/[( t+v)r  E (~'~Pi[wO/~i) 
/ = 1  / , / = 1  

on the set 

M={(O 1 . . . . .  ON):(O;I4/) = Mq, O-<Mq-< 1, i , ] = l  . . . . .  N} ,  

K and it is shown that, in the case of N < Z  + 1 (where Z = ~a=~ Za is the total 
nuclear charge), it attains the global minimum at a vector (~1 . . . . .  ON) with 

0 ' 1 0  ~) = a, .  

As this extended functional agrees with ours when Mq = 6q, then Eo~ is the 
minimum not only of our functional E(01 . . . . .  0 N) but also of the extended 

i i co 0o functional. Therefore,  because in general (0~ ]the) = Mq with 0 -< M / i  <- 1, i, ] = 
1 . . . . .  N, (cf. [13] Lemma 2.2) and hence (0~ . . . . .  0~ )  e M, the relation (14) 
yields the equation 

N N 
E ( q , L  , 1 , J - ,  J [(t+v)Oo~)+~ Y (~Ooo~poolW~p~Oo~)=E~. 

i = 1  i , j=l  
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Recalling the general expression for E~  which can be obtained from (4), we get 
by the above equation 

i i det {(~o~1~)} = 1 

{0 i f k ~ l  {0 if(pq)#(rs) 
D[k, 1]= 1 i f k = l  D[pq, rs]= 1 i f (pq)=(rs) .  

These last equations imply, by well known properties of determinants and 
i ] matrices, that (0oo[6~)=~j  and hence that (4'~ . . . . .  ~ )  minimizes 

E(g, ~ . . . . .  ~b N) on D(E). In other words we have proved that the subsequence 
N �9 , ~,~')}m'=ml converges weakly, both in W and in 1_, to a minimizing 

vector (tp~ . . . . .  tp~) of our functional. 

We complete the proof of this theorem showing that the subsequence 
N , ,  ~b,.,)}m,=.q converges strongly in L to (0~ . . . . .  ~b~). By (ii) and by 

i i the result proved above (tp~o [~poo) = 6ii, we have 

lim [ (~ , ,  . . . .  = . . . . .  ( 1 5 )  
m , - - >  o o  

where I ( ' ,  . . . .  .)[ (cf. (3)) denotes the norm of k. Now this convergence (15) 
together with the weak convergence in k (13) imply (cf. [22] p. 253) the strong 
convergence in I_ of { (~ , ,  �9 �9 �9 ~-m',jm't'N al~,=ml, to (tp~, . . . ,  g,~), i.e. 

lim [(~bL,, . . . .  ~ , ) -  ($~ . . . . .  ~ ) [ =  0 
m ' - - > o o  

or, which is the same, 

lim [~p~, - 4,~o[ = 0 ,  i = 1  . . . . .  N .  
rr l  r ---~ oc~ 

4 .  C o n c l u s i v e  R e m a r k s  

The requirement of the completeness in W 1 of the orbital bases, in order to 
ensure the convergence of the SCF-RRM and MCSCF-RRM, corresponds 
exactly to the co-called Michlin's criterion (cf. [9, 11]) of convergence of the 
RRM in the CI method. In the case of that method, however, there exists a 
more restrictive sufficient condition of convergence which was firstly derived by 
Kato [8] and recently reconsidered in [9, 11] (in [9] it has been named Kato's 
criterion). Also in the SCF-RRM and MCSCF-RRM we can immediately derive 
another sufficient condition of convergence which corresponds exactly to Kato's 
criterion. To this end, we define V0 ~ D(t) the new norm 

111~1112 = Itpl2 + ]t~p] 2, 

By the same arguments in the proof of Proposition 2, it can easily be seen that 
D(t) equipped with this new norm becomes the Sobolev space W2"2(R3; C 2) 
(i.e. the set of pairs {~+, ~p_} of complex-valued functions, with each function 
belonging to the ordinary Sobolev s p a c e  W2"2(e3)). From now on, we shall 
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briefly indicate W2'2(R3; C 2) by W 2 (W/2'2 (R3; C 2) by W~) and W2'2(R 3) by 
W2(R 3) (W 2"2 (R 3) by W~ (R3)). AS strong convergence in W 2 implies strong 
convergence in 17 W 1, we get immediately that Propositions 3, 6 remain valid 
even if the spaces W] are replaced by the spaces W~. As a consequence of the 
continuity of the energy functional in this new topology we can state that the 
E-convergence  of the S C F - R R M  and M C S C F - R R M  as well as the 0-conver-  
gence of the S C F - R R M  are guaranteed provided that one uses orbital bases 

i cO 
{&n},=a complete  is in W~, i = 1 , . . . ,  N. Let  us remark  that both our conditions 
for E-convergence  and 0-convergence are only sufficient and not necessary. 
Therefore  it is not excluded that E-convergence  as well as 0-convergence can 
take place, even when orbital bases i {~bn}n=l complete only in L 2 are used. 
Fur thermore,  with regard to 0-convergence,  as far as we know, no theorem 
analogous to Theorem 1 exists, which explicitly states that the completeness 
only in L~ of orbital bases does not guarantee 0-convergence.  Thus, it seems 
to us that the conditions for 0-convergence are less restrictive, and it might 
happen that, by using in the S C F - R R M  orbital bases {~bn}n~176 complete only in 
L 2, the 0-convergence takes place and E-convergence  does not. Anyway,  such 
a situation, although curious, would be explained by the discontinuity everywhere 
of E(01 . . . . .  O N) in I_. In fact, in this case the convergence in I_ of (0~  . . . . .  0~ )  
to (0~  . . . . .  0 ~ )  does not imply the convergence of Em to E~.  

Our sufficient criterion of convergence is valid for arbitrary atoms and molecules, 
and it requires for the latter the completeness in W~ i = 1 . . . . .  N, of one-centre 
orbital bases only. If this is the case, the addition of other orbital bases (even 
if not complete in W~ ) centered at different sites, does not destroy the conver- 
gence, but, on the contrary, increases its speed. Therefore the convergence is 
always ensured by our criterion in molecular calculations, performed by using 
many-centre orbital bases (so as in the usual calculations where the bases are 
centered at the nuclei of the molecule), provided that at least one set of one-centre 
orbital bases (no matter where it is centered) is complete in W~. 

As to the analysis of the completeness properties in the spaces here introduced 
of the orbital bases mostly used in S C F -R R M and M C S C F - R R M  calculations, 
we refer the reader  to the exhaustive study per formed by Klahn and Bingel [10]. 
We remark  only that those authors indicated by HA (R 3) and HA2(R 3) the Sobolev 
spaces here denoted by WI(R 3) and W2(R3), respectively, and that they studied 
completeness proper ty  of spatial orbital bases only since the introduction of spin 
changes nothing (cf. [9] p. 21 and footnote 17 of the present work). 

17 The imbedding of W2(R 3) in WI(R 3) (cf, [19]) implies the imbedding of W 2 in W 1. More 
generally, any properties involving convergence (as completeness property) which hold for the spaces 
w2(e 3) and WI(R 3) disregarding the spin remain valid for our spaces W 2 and W 1, which take 
into account the spin. This follows easily from expression (9) for the norm of W 1 and from expression 
rll~lll = (lll~'+lll2 +111~'-1112) a/2 for the norm of W 2. 
t8 Since completeness in W 2 implies completeness in W 1 (see footnote~7), this latter convergence 
criterion is included in the former. 
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In the actual calculations the orbitals, as we said, are generally restricted to 
being products of space and spin functions. In this case the energy functional 
depends only on the spatial part of the orbitals. Hence the spaces L~, W~ and 
W~, which take into account the spin, are replaced by the spaces L 2 (R 3), W~ (R 3) 
and W~ (R3), which neglect the spin. It is immediately seen that, even with this 
replacement of spaces, everything said in this work remains valid. In particular 
we can state that if - in the case of orbitals products of space and spin functions 

i co 
- one takes, as orbital bases, sets {05~}n=a complete in W~ (R3), then the 
E-convergence of the SCF-RRM and MCSCF-RRM and the 0-convergence 
of the S C F -R RM are ensured. However  we remark that now, since we have 
orbitals restricted to being products of space and spin functions, the Ritz-energy 
Em converges to a value E "  which is the infimum of the energy functional on 
such a more restrictive class of orbitals and hence can be in general greater than 
the infimum Eco previously considered. Analogously, the Ritz-orbitals 
(0~ . . . . .  O N) are convergent to orbitals (0~ . . . . .  0 ~  r) which can merely be a 
local minimum and not a global minimum. The spatial part of the orbitals is 
expanded mostly in terms of Slater or Gauss functions [2]. However,  a widespread 
belief [1, 2, 16-18] is that arbitrary orbital bases, as long as complete (on a 
topology which indeed is never specified, but understood to be that of L 2 (R 3)), 
could be safely used without loosing the convergence of calculations. In virtue 
of the results of this work we can state that this belief is mathematically 
groundless. Klahn and Bingel [10] derived some sufficient conditions on the 
orbital exponents of Slater and Gauss functions, in order that sets of these 
functions turn out to be complete in W2(R 3) and hence in WI(R3). Those 
conditions also ensure the E-convergence of the SCF-RRM and MCS CF -RRM 
as well as the 0-convergence of SCF-RRM. In particular, when the set of Slater 
functions 

{r z exp [-~(n,  l)r] Ytm (0, 05)} for all n ~ 1, l -> 0, Imt ~ 1 (16) 

is taken as orbital basis, the above convergences are guaranteed if 

(I) The sequences of positive numbers {~C(n, l)}n~a have an accumulation point 
~(1) with 0 < ~(1) < oe for each l = 0, 1, 2 . . . . .  

When it is taken as orbital bases the set of Gauss functions 

{r l exp [ -s  I)r 2] Yt,~ (0, 05)} for all n -> 1, 1_  > 0, Iml---/, (17) 

then the convergence of the SCF-RRM and MCS CF -RRM is guaranteed either 
if (I) holds or if 

(II) the sequences {~(n, l)}~=1 of positive orbital exponents for each l have a 
subsequence {~(n',/)}~= 1 decreasing monotonically to zero with ~ ,  ((n ' ,  l) --- oe. 

Recently [17, 18, 25] the problem of using extended bases built up from functions 
from the sets (16) or (17) has been investigated in atomic and molecular calcula- 
tions. In those works the employment of such bases is made feasible because mt 
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orbi ta l  exponents  ~C(n, l) of symmet ry  I are genera ted  by means  of the Raffenet t i ' s  
fo rmula  [26]: 

~(n,l)=alfl~ a l > 0 ,  /3t > 1, n = l  . . . . .  mr. (19) 

However ,  at var iance  with the Raffenet t i ' s  me thod  the coefficients a~ and/3t  are 
no t  d e t e r m i n e d  by opt imizat ion,  bu t  e i ther  by a formula  [18] in some way 
empirical ,  or  qui te  arbi trar i ly [17, 25]. Anyway ,  in bo th  cases it is supposed that 

such choices of at and/3t  ensure  the convergence  of calculations.  Now, in vir tue 

of the above m e n t i o n e d  results (I) of K lahn  and  Bingel  and  in vir tue of the 
results of the presen t  work we can state that  the convergence  of S C F - R R M  and 

M C S C F - R R M  calculat ions by taking as orbi ta l  bases Slater or Gauss  funct ions  
with orbi ta l  exponents  genera ted  by (19) is gua ran teed  whenever :  

0 < a t < ~  and  0 < i l l - < l ,  for~eachl.  (20) 

Let  us finally r emark  that  the above condi t ion  on /3 t  is satisfied ne i ther  by the 
Raffenet t i ' s  fo rmula  (19), nor  by the choices in [17, 18, 25]. However ,  as we 

said, the convergence  might  take place also with choices of/~l different f rom (20). 
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